

Adam Mickiewicz University, Poznań

Faculty of English

Foreign language acquisition of speech from a multidimensional perspective; the case of L2/L3/Ln English

Magdalena Wrembel

magdala@amu.edu.pl

PAC 2023, Paris

wa.amu.edu.pl

Introduction

- Complex linguistic landscape of today -> new perspective in language acquisition research, beyond SLA (e.g. De Angelis 2007)
- A growing body of studies into the acquisition of third language (L3) phonology (Wrembel & Cabrelli Amaro 2018)
- Dynamic approach to multilingualism in line with new research outcomes from neuroscience, sociolinguistics or psychology

Dynamics of multilingualism

- All languages in multilinguals' repertoire constitute dynamic systems undergoing continuous change (Kroll et al. 2012, Sorace 2020)
- **Cross-language interactions** persistent from the very onset of multiple language learning (Kroll 2020)
 - in different linguistic domains i.e. lexis, grammar, and phonology
 - in divergent conditions (irrespective of non/convergent structures or language distance/proximity)
- Reconfiguration of cognitive network -> Convergence between L1 and L2 (Sorace 2020)

Dynamics of multilingualism

- L1 phonetic drift from the onset of L2 learning (Chang 2012)
- "L1 takes a hit" L1 performance on a lexical decision task altered even after brief exposure to L2/Ln (Kroll 2020)
- Passive language exposure in multilingual environment facilitates new language learning (Bice and Kroll 2015)
 - vowel harmony in an unfamiliar language in uni- vs. multilingual environment (Southern California > Pennsylvania) ERP study

UAM Faculty of English, wa.amu.edu.pl

• Overview of L2 vs. L3 phonological acquisition

- dynamic cross-linguistic influence
- (potential) multilingual advantage
- Methodological considerations
- Project insights

Outline

- Production study
- Perception study
- Processing study (ERP)
- Ln speech corpus

Comparing bilingual and trilingual speech

- Traditionally conflating bi- & multilingualism
- Evidence for distinctness (neuro-, psycholinguistics)
- Quantitative differences
- Qualitative differences
- Extended interactions between languages
- **Prior** linguistic knowledge
- More extensive previous learning experience
- Increased metalinguistic awareness
- Enhanced language learning strategies

(De Angelis, 2019)

Comparing bilingual and trilingual speech

- Cross-linguistic Influence (CLI)
- Enhanced perceptual sensitivity
- Facilitation in learning new phonologies
 - Increased metalinguistic awareness
 - Trilingual advantage (potential)

Cross-linguistic Influence (CLI)

- Quantitative differences
- SLA: L1-based transfer (one-to-one)
- TLA: multidirectional & complex CLI
 L1⇔L2, L1⇔L3, L2⇔L3 ...
- Qualitative differences
- L1-based CLI in L2/L3 (due to established neuro-motor routines)
- L2-based CLI in L3 (interaction of two non-native languages, 'foreign language effect', 'lateral CLI' (Jarvis & Pavlenko, 2008)

Cross-linguistic Influence (CLI)

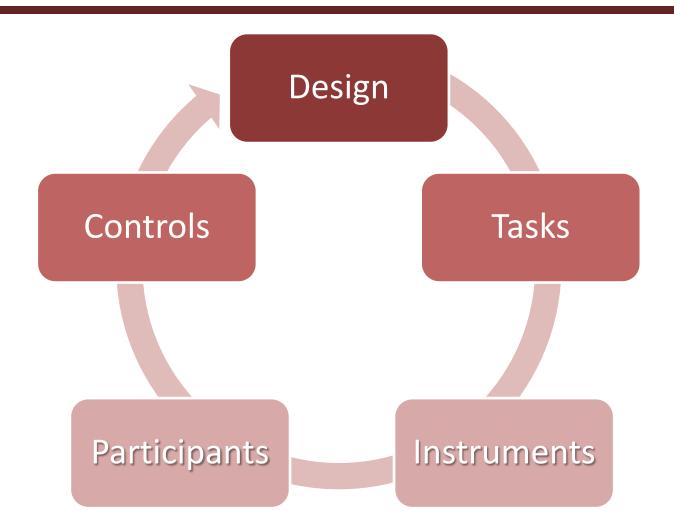
- Combined L1 & L2 CLI
 - L1-L2 hybrid values in L3 VOT (e.g. Cardoso & Collins 2010, Dittmers et al., 2018, Wrembel 2015 for L3 French)
- Mixed CLI Archibald (2022) L1 Arabic, L2 French, L3 English
 - CLI from L2 French for L3 English vowels
 - CLI from L1 Arabic for L3 English consonants
- Structure-dependent CLI Domene Moreno (2021): German-Turkish heritage speakers learning L3 English
 - perception of vowel length and laterals: Turkish-based CLI
 - production of consonant clusters and vowel length: German-based CLI

Enhanced perceptual sensitivity

- L3 learners tend to outperform L2 learners in target language phonetic discrimination
 - e.g., Antoniou et al., 2015; Enomoto, 1994; Onishi, 2016
 - Kopečková (2014) higher perceptual sensitivity for vowels in young multilingual vs. Polish-English bilingual learners
- Onishi (2016) 'global advantage in phonological perception'
 - L3 learners more sensitive in the discrimination of non-native speech
- BUT also contradictory or mixed results
- No significant differences between monolinguals and bilinguals in discriminating novel speech sound contrasts.
 - e.g., Patihis, Oh, & Mogilner (2015)

Facilitation in learning new phonologies

- Amengual (2021) examined VOT in English, Japanese, and Spanish /k/ in three different groups;
 - two groups of English-Japanese bilinguals in a mirror L1/L2 design,
 - a trilingual group with L1 Spanish, L2 English and L3 Japanese.
- Results:
 - both bilingual and trilingual participants able to differentiate VOT in the three languages
 - acquired language-specific timing properties in English, Japanese and Spanish
 - however, bilinguals' VOT productions in L2 converged more on L1 VOT
 - trilingual group a greater degree of differentiation between their
 VOT values in L1 Spanish, L2 English and L3 Japanese


Facilitation in learning new phonologies

- Trilingual advantage found in some studies might not reflect a general advantage in phonological acquisition
- Rather: L3/Ln learners can benefit from specific phonological properties of their background languages
- For more -> Gut & Wrembel (forthcoming) "Comparing Bilingual and Trilingual Phonetics and Phonology" in CUP Handbook of Bilingual Phonetics and Phonology (ed. Amengual 2023)

Methodological considerations

Methodological challenges: Language status

• L1 / L2 / L3 /Ln

- Chronology of acquisition
- Proficiency and use
- -> potential dominance shift

• English as L2 / Ln?

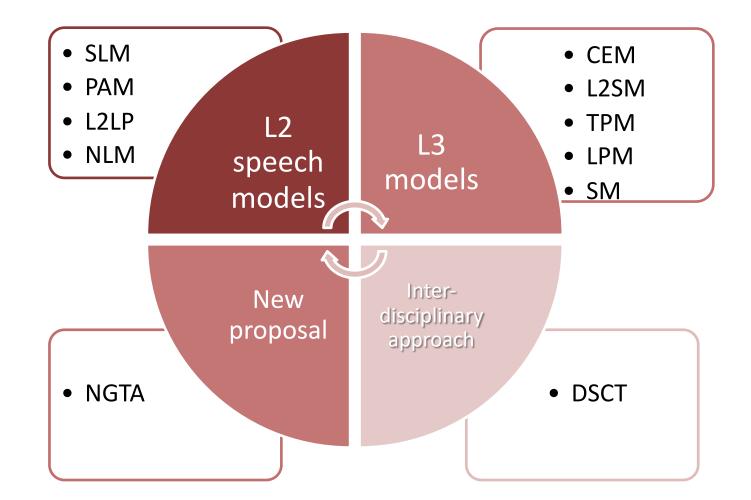
Methodological challenges: Design

- Focus: outcome of L3 acquisition -> process
 - cross-sectional vs. longitudinal
 - several testing times
 - dense data collection
 - DSCT framework, e.g. Kopečková et al.
- Types of L3 learners
 - Foreign language learners (late sequential)
 - Emerging multilinguals
 - Initial state vs. more advanced L3 learners
 - Active bi/multilingual (early, simultaneous) + L3
 - Heritage speakers L1/L2 -> 2L1s + L3

Methodological challenges: Tasks

- Tasks and procedures
 - Speech sample elicitation in all (3 or more) languages (!)
 - Degree of control vs. ecological validity
 - Perceptual paradigms for separate languages or crosslinguistic
- Language modes in testing
 - Induced monolingual (separate testing days)
 - Encouraged multilingual (favouring CLI, code-switching)

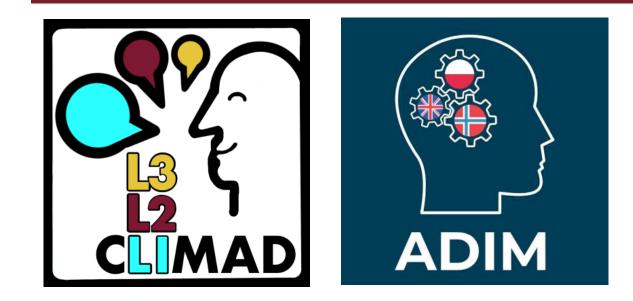
Methodological challenges: Controls


- Comparison groups
 - Monolingual controls?
 - Bilingual control groups
 - e.g. Llama & Lopez-Morelos 2016, Hopp & Schmid 2013
 - Mirror-design groups
 - L1 X, L2 Y, L3 Z vs. L1 Y, L2 X, L3 Z
 - L1 X, L2 Y, L3 Z vs. L1 Z, L2 Y, L3 X

– e.g. Gut, Wrembel, Kopečková, Balas 2019

– Same group over time

Theoretical frameworks



Third language (L3) acquisition models

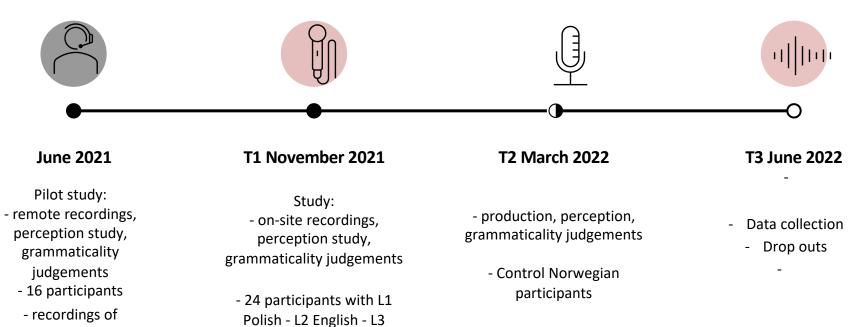
- Cumulative Enhancement Model Flynn et al., 2004
 - All previously learnt languages may influence subsequently acquired languages (if facilitative)
- L2 Status Factor Model Bardel & Falk 2007
 - L2 influence prevails over L1, Psycho & neurolinguistically motivated, greater cognitive similarity of L3 and L2 (not L1)
- Typological Primacy Model Rothman 2011, 2015
 - Typology determines source of CLI, Holistic transfer from L1 or L2
- Linguistic Proximity Model Westergaard et al. 2017, 2019
 - CLI from L1 and/or L2 based on structural similarity
 - property-by-property transfer
- Scalpel Model Slabakova 2017
 - In line with LPM + cognitive and experiential factors

INSIGHTS FROM L3 PROJECTS

OPUS-19-HS project CLIMAD "Cross-linguistic influence in multilingualism across domains: Phonology and syntax"

GRIEG-1 ADIM "Across-domain investigations in multilingualism: Modeling L3 acquisition in diverse settings"

CLIMAD study design



- L1 Polish, L2 English (B1/B2), L3 Norwegian (A1)
- 24 participants at T1 (17 at T3), aged 20
- 1st-year students in Norwegian modern language BA programmes
 - University of Szczecin
 - Poznań College of Modern Languages (WSJO)
- Participant profiles:
 - Language History Questionnaire LHQ (Zhang et al. 2014)

Study design

- Three data collection times (T1, T2, T3)
 - T1 in November 2021
 - T2 in March 2022
 - T3 in June 2022
- Three sessions
 - speech production (vowels, VOT, sibilants/retroflexes)
 - speech perception (as above)
 - grammaticality judgements (syntactic features)
- Fieldwork mode
- L3 vs. L1, L2 language blocks (different days)

Norwegian

control speakers (remote)

Exploring spectral overlap in L1 Polish, L2 English and L3 Norwegian vowels

Jarosław Weckwerth, Magdalena Wrembel, Anna Balas, Kamil Kaźmierski

PRODUCTION STUDY

wa.amu.edu.pl

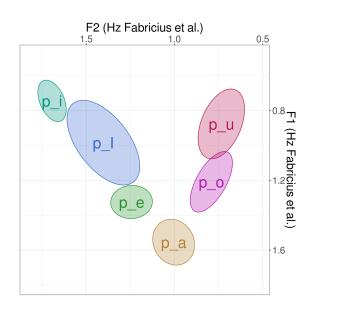
Production study design

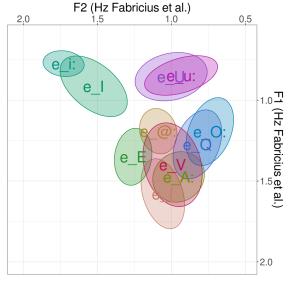
- Aim: to elicit all the vowel phonemes in 3 languages
- Tasks: sentence and word reading
- Stimuli:
 - real and nonce words in (dVd, dVt)
 - in a carrier sentence and in isolation
 - e.g. There is the same vowel in "god" and "dod"
- Three language blocks (L1, L2, L3)

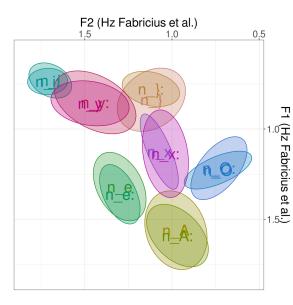
Processing and measurement

- Forced alignment (WebMAUS, Kisler et al. 2017)
- Target vowel boundaries manually corrected by four phoneticians
- Measurements:
 - Averages of the first three formants, in the central portion (30–70%) of each vowel
 - Vowel durations

Research questions

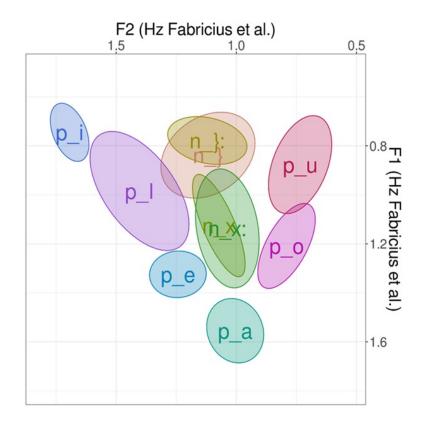



- What are the interactions between the three vocalic subsystems in multilingual learners?
- Are new categories formed in L3?
- What are the sources and directions of CLI?
 - Do the L1 and L2 have a facilitative/non-facilitative influence on the L3?
- Are the L1/L2/L3 systems stable over time?
 - Does category overlap change?
 - Pillai scores (Nycz & Hall Lew 2013)
 - Does category compactness change?
 - SDs



 Additional L2 and L3 spectral categories found in areas unoccupied by L1 vowels

• Some differentiation between L2 and L3


L1 Polish L2 English L3 Norwegian

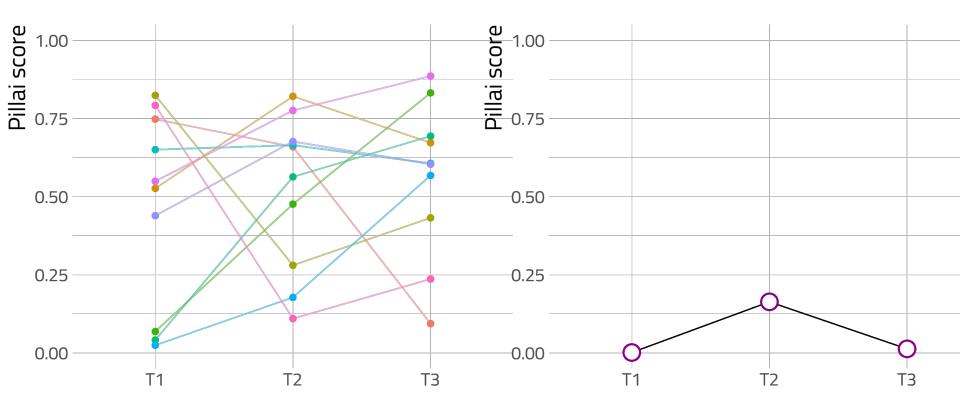
Results

Results: estimating spectral overlap between vowel categories

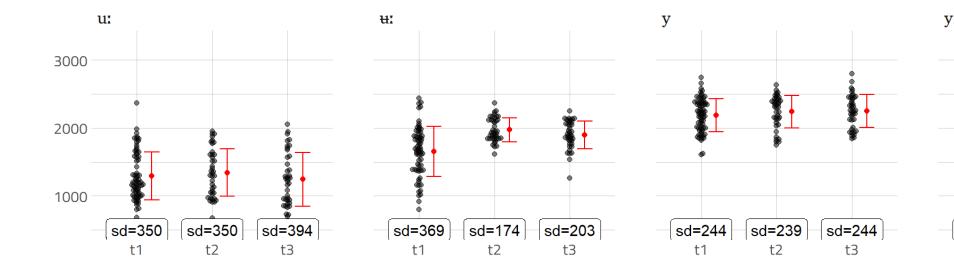
Norwegian /ʉ(ː)/ /ø(ː)/ separate from Polish

Pillai score measures (0 - 1)

- GUD vs. pl /ɨ/: 0.69
- GUD vs. pl /u/: 0.75
- LØP vs. pl /ε/: 0.45
- LØP vs. pl /ɔ/: 0.58
- GUD vs. GOOSE: 0.21
- GOOSE vs. pl /u/: 0.33
- the higher the value, the greater the difference between the two distributions

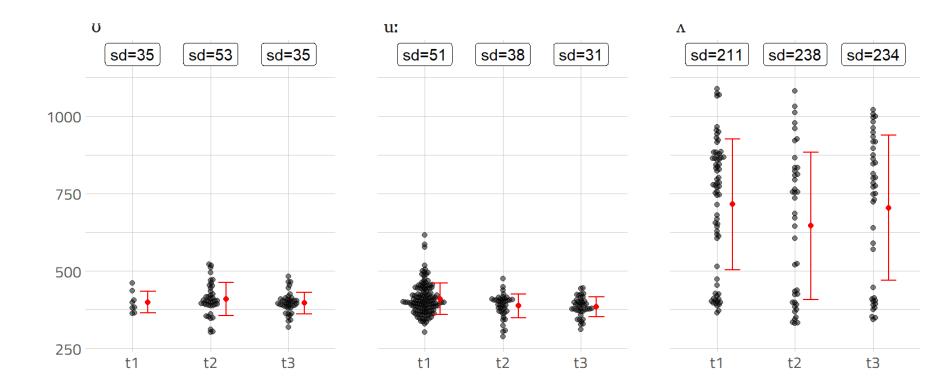


Nor /+(ː)/ vs. Pol /u/ at T1, T2, T3


Pillai score 1.00 t1 t2 t3 yword2 = BUTeyword2 = GU 0.75 1800 1600 0.50 1400 Ъ 1200 0.25 1000 0.00 T1 T2 T3 t2 t3 t1 time

keyword2*time effect plot

Nor /+(ː)/ vs. GOOSE at T1, T2, T3



L3 GUD: descreased diffusion T1-T3

L2 STRUT: L3-to-L2 interference?

Discussion

- Multilingual learners try to keep their vocalic systems apart
 - > new phonological categories formed in L3 Norwegian
 - > L2 English less stable, subject to variability
 - > L1 Polish remains stable
- There are interactions between the three vocalic subsystems in multilingual learners?
 - > prevailingly L1>L3, but some L2>L3
- Phonological development over time in L3 Norwegian

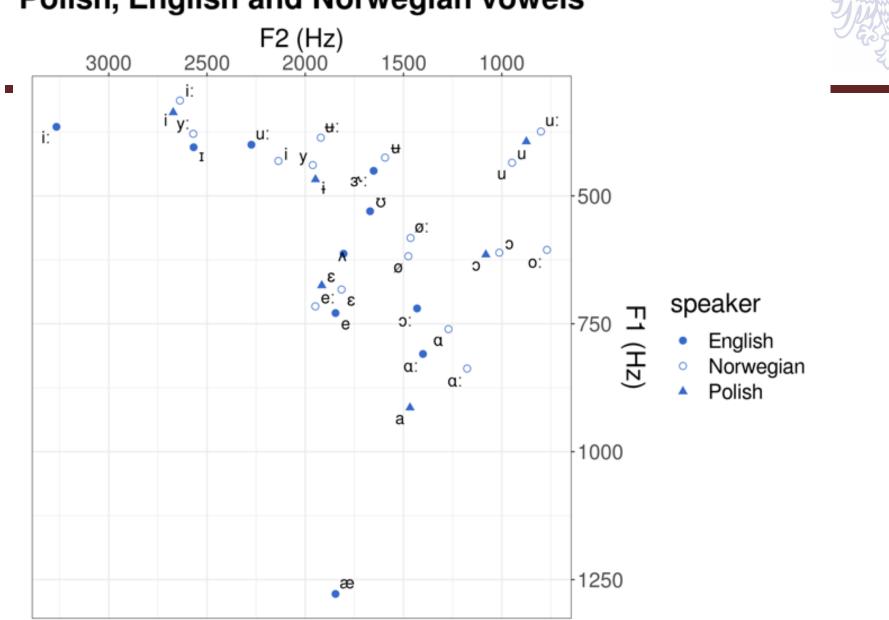
Discussion: CLI sources and directions

- CLI from L1/L2 -> L3
 - Individual variability in Nor BOK
 - Realized as [o] via Polish orthography
 - Realized as [ʉ] based on GOOSE?
- Reverse CLI from L3 -> L2
 - STRUT F1 very diffuse as a result of interference from Norwegian (!) orthography
- Evidence of CLI from L2 -> L3
 - GUD and pl /u/ increase separation
 - GUD starts and continues in overlap with GOOSE
- NO reverse CLI L2/L3 -> L1

Perception in L2 and L3: The relationship between English and Norwegian vowel assimilation patterns and the Euclidean distances

Anna Balas, Magdalena Wrembel, Jarosław Weckwerth, Kamil Kaźmierski, Zuzanna Cal, Karolina Rataj

PERCEPTION STUDY



wa.amu.edu.pl

Aim & rationale

- To explore the relationship between L2 and L3 perception and acoustic similarity
- To examine perceptual assimilation patterns for L3 Norwegian and L2 English vowel assimilated to L1 Polish vowel categories
- To compare the relationship between perceptual patterns and acoustic distance between the vowels operationalized as Euclidean distance
- So far studies focused on
 - L2 perceptual assimilation (Best & Tyler 2007, Tyler et al. 2014),
 - relationship between vowel perception and their acoustic parameters (Strange et al. 2003, Escudero et al. 2012, Alispahic et. al. 2017)
- No previous such studies on L3 nor comparing L2 and L3

Polish, English and Norwegian vowels

UAM Faculty of English, wa.amu.edu.pl

Hypotheses

- H1: The smaller the Euclidean distance between two vowels, the higher the likelihood of assimilating a given L2 English/L3 Norwegian vowel to an L1 Polish vowel category.
- H2: The Euclidean distance predicts assimilation better in L3 than L2.
- H3: If we take into account the Euclidean distance, L2 vowels should be perceived as worse exemplars of L1 categories than L3 vowels.

Methodology

- Participants N=24 L1 Polish
 - Mean age: 19.86
 - 17 females, 7 males
- L2 English
 - Advanced/intermediate
 - mean of language learning: 12.23 yrs
- L3 Norwegian
 - Beginner: 2 months of intensive instruction
 - Instructed setting

Methodology

• Perceptual assimilation task

- 10 English and 16 Norwegian monophthongs to six Polish vowel categories (orthographic labels)
- Two language blocks, on separate days
- Goodness of fit ratings
 - Likert scale from 1 to 7
 - 1 (weak fit) -- 7 (good fit)
- Stimuli: embedded in /dVd/
- Randomised, 3 repetitions

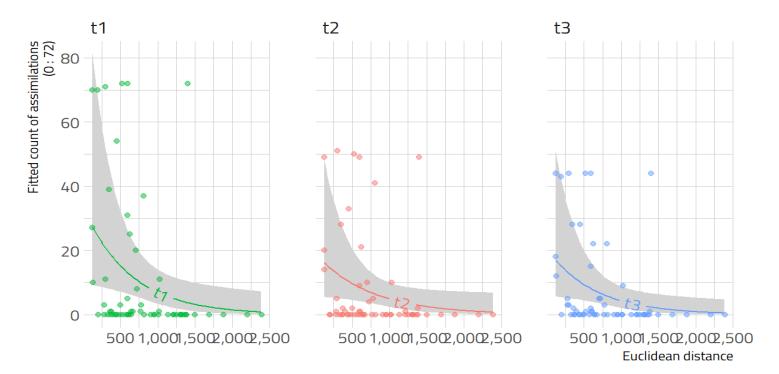
42

• Run in PsychoPy (Peirce et al. 2019)

Który dźwięk słyszysz między /d/ a /d/? a e i o u y a a a a a a Jak bardzo ten dźwięk

ije do wybrane

słabo) 1 - 2 - 3 - 4 - 5 - 6 - 7 (dobrze)


	NORWEGIAN	Polish vowel labels					
_ •	stimuli	<i></i>	<y></y>	<e></e>	<a>	<0>	<u></u>
Results	TID /i:/	100% 5.77					
	FIN /i/	33.33% 5	37.5% 5.41	26.39% 5.21			1.38% 3
	CTED /o/		88.89%		6.94%	1.39%	
	STED /e/	I	5.14		5.6	2	
	LYS /y:/	70.83% 4.59	23.61% 5	1.39% 1			4.17% 4.33
	SYND /y/	16.66% 5.25	62.5% 4.64	8.33% 5.17		2.78% 5	8.33% 2.33
	LØP /ø:/		9.72% 3.57	19.44% 5.14	5.56% 3.75	58.33% 4.45	6.94% 3.2
	SØNN /ø/		11.11% 3.25	36.11% 4.35	8.33% 5	33.33% 4.29	6.94% 3.2
	ROM /u/					72.22% 5.08	27.78% 4.9
	GUD /ʉ:/	2.78% 7	18.06% 4.23	1.39% 1		1.39% 1	75% 4.72
	SLUTT /ʉ/	1.39% 3	23.61% 4.11			9.72% 5	63.89% 4.65
	ENGLISH stimuli						
	FLEECE	100% 5.8					
	КІТ	37.5% 5.03	34.72% 5.84	27.78% 6.15			
	DRESS		98.61% 6.03		1.39% 5		
	GOOSE						100% 5.15
43	FOOT	1.39% 7	4.17% 4.67			43.06% 4.61	51.39% 3.86

Results: Euclidian distance & assimilations

English vowels

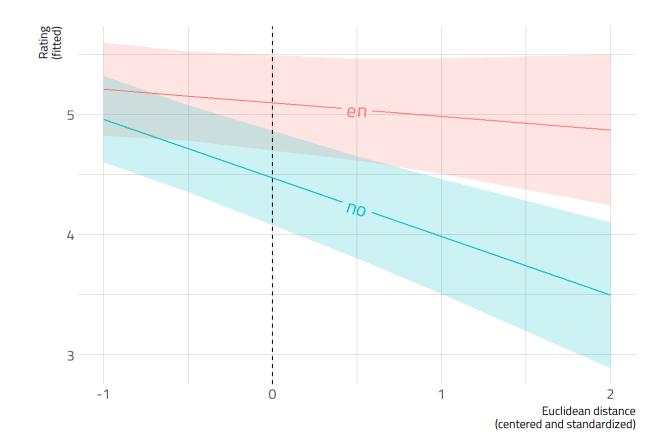
Effect of Euclidean Distance over time

Discussion

- A negative binomial model to capture whether F1-F2 Euclidean distance is related to how often a given L2 Eng / L3 Nor vowel is assimilated to a given L1 Polish vowel
 - ED is negative and significant (z = -6.751, Pr(>|z|)
 - = 1.46e-11***) for L2 & L3
 - T1 the strongest effect in both L2 and L3
- H1: The larger the Euclidean distance, the fewer assimilations predicted

Discussion

- Stronger effect of the ED L3 than L2


 coefficient in Nor ed_z = -1.7 > Eng ed_z = -0.61,
 - assimilations in the better-known L2 English have stabilized
- H2: The Euclidean distance predicts assimilation better in L3 than L2

Discussion

- Mixed effects linear model of **Liker rating** as a function of ED, language (L2, L3) and their interaction; by-participant random intercept.
- Larger Euclidean distance means lower **goodness of fit ratings** in both languages.
- Significant effect of language: L2 English vowels are rated higher than L3 Norwegian vowels.
- H3: If we take into account the Euclidean distance, L2 vowels should be perceived as worse exemplars of L1 categories than L3 vowels.

Interim summary

- The smaller the Euclidean distance between two vowels, the higher the likelihood of assimilating a given non-native vowel to a native category.
- There is a stronger effect of ED in L3 than in L2.
- The perceptuo-acoustic similarity patterns restructured over time; the strongest effect of ED at T1.
- L2 English vowels seem more similar to L1 Polish vowels than L3 Norwegian vowels.

Adam Mickiewicz University, Poznań

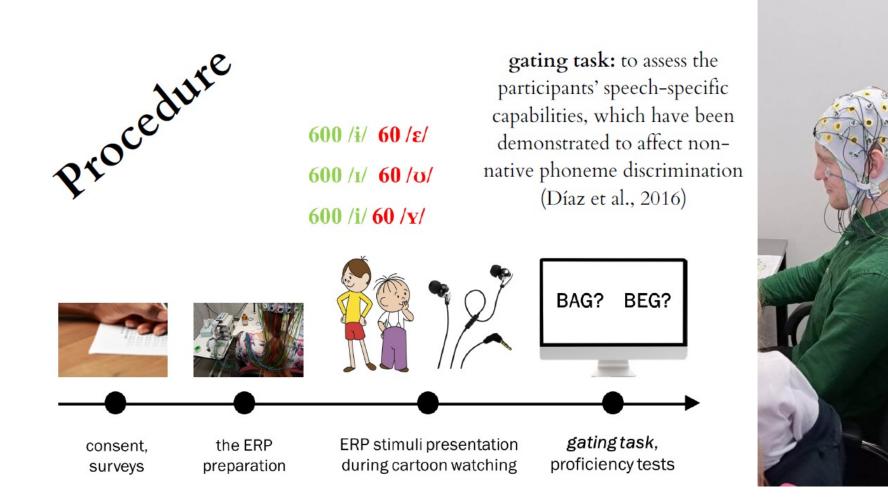
Faculty of English

Cross-linguistic influence in vowel processing in multilinguals

Hanna Kędzierska, Karolina Rataj, Anna Balas, Zuzanna Cal and Magdalena Wrembel

ERP STUDY

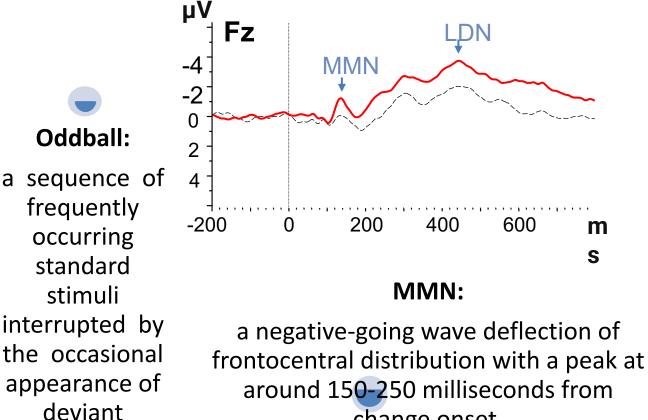
EEG study



- Aim: to examine non-native phonological contrasts perception and processing in L2 and L3
- RQ: Will phonological contrasts be equally easy to detect and process in L2 English and L3 Norwegian?
- Predictions: We predict the MMN to be stronger in native when compared with non-native speech (Jakobyet al., 2011; Liang & Chen, 2022; Näätänenet al., 1997; Song & Iverson, 2018)
 - BUT the scale of the MMN effect in L2 vs. L3/Ln impossible to predict

-> NO previous studies which would focus on such a comparison.

EEG study



UAM Faculty of English, wa.amu.edu.pl

Oddball paradigm

change onset.

600

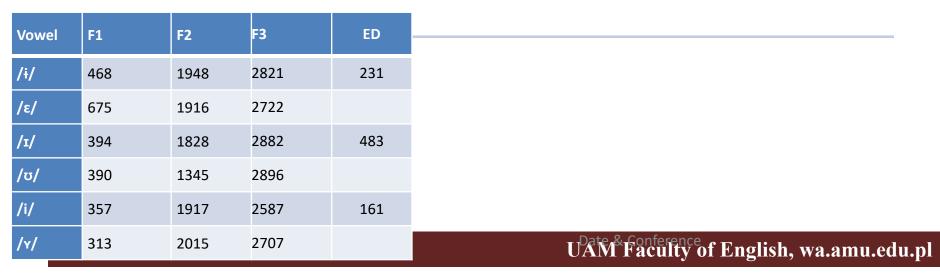
m

S

P300 and LDN:

often following the MMN. **P300** is associated with switch of attention, LDN involves additional cortical resources to extract the difference.

stimuli)


Experimental stimuli

The Polish $/i/-/\epsilon/$ contrast mainly manifested in height.

The English /1/-/v/ contrast mainly manifested in backness.

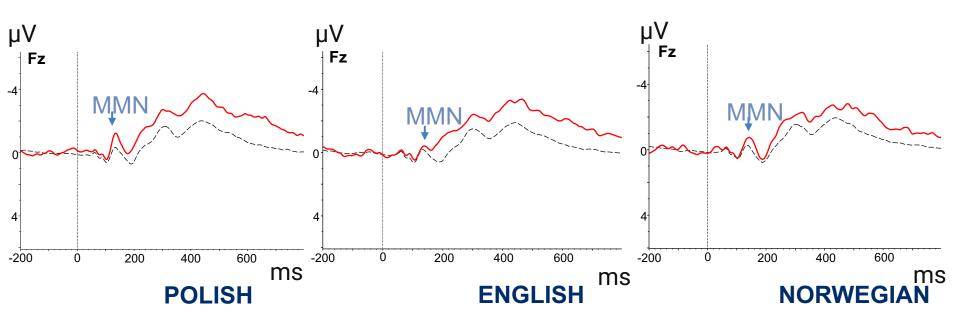
The Norwegian /i/-/y/ contrast mainly manifested in roundness.

EEG study

• 2 groups – diverse acquisition settings

- Formal learners in Poland (N=24)
- Naturalistic learners in Norway (N=17)

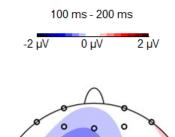
EEG study: Analysis in progress


- Mean amplitudes of ERP time-locked to the onset of investigated phonemes
- Analysis in 3 main time windows:

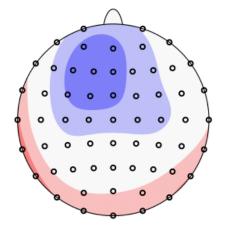
– MMN, 3Pb, LDN

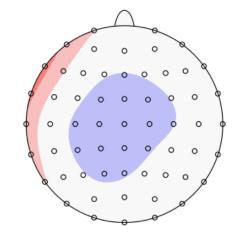
- Factors: language (L1 vs. L2 vs. L3) x deviancy (standard vs. deviant) x brain region (frontal vs. parietal)
- Promising results 😳

ERP results: AMU



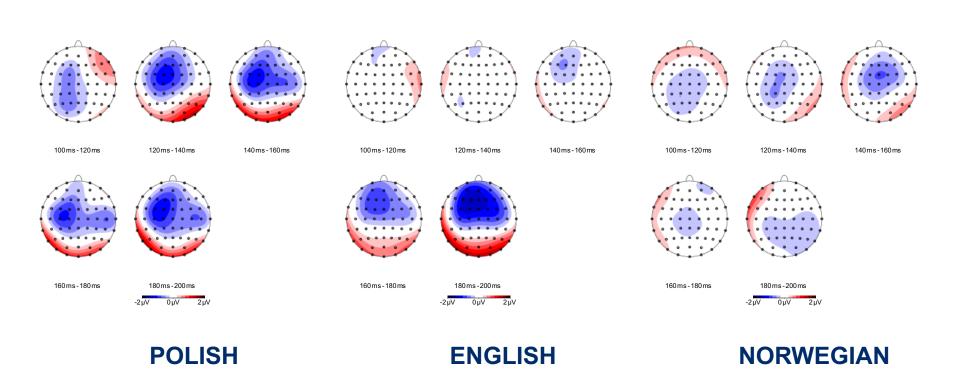
UAM Faculty of English, wa.amu.edu.pl


ERP results: AMU



0

0


POLISH

ENGLISH

NORWEGIAN

ERP results: AMU

The corpus of spoken Norwegian, English and Polish (native and non-native) used in semi-formal, controlled situations as well as (semi)spontaneous speech.

Tasks:

- a) word lists reading
- b) text reading (North wind and the sun)
- c) semi-spontaneous (MAIN picture description)
- d) spontaneous (story telling, eg childhood experiences etc.)
- word-aligned with orthographical transcriptions
- error tagging
- LaBB-CAT environment as well as UAM repository
- publicly available

Language groups:

a) L1 Polish, L2 English, L3 Norwegian

- b) L1 Polish, L2 English
- c) L1 Norwegian, L2 English
- d) L1 Norwegian, L2 English, L3 Polish

So far:

- 119 speakers
- Ca 80 hrs recordings

- Metadata:
- gender
- age
- language recorded
- other languages known by the speaker
- AoA of the recorded language
- proficiency
- acquisition/learning environment (formal vs. naturalistic or mixed)
- Participant profiles based on LHQ (Language History Questionnaire)

Way forward

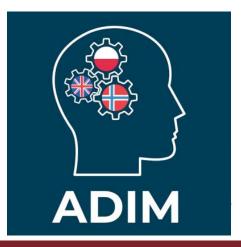
To further pursue theoretical refinement

To triangulate different methodologies

To investigate features that pattern differently across languages

To expand across-domains studies

To develop multilingual speech corpus


Norway grants

Acknowledgements

- This research is supported by a grant of the Polish National Science Centre (NCN), **OPUS-19-HS project** (UMO-2020/37/B/HS2/00617), CLIMAD "Cross-linguistic influence in multilingualism across domains: Phonology and syntax"
- Norway funds/NCN grant GRIEG-1 (UMO- 2019/34/H/HS2/ 00495) ADIM "Across-domain investigations in multilingualism: ModelingL3 acquisition in diverse settings"

Thanks to the project team ©

Thank you! Dziękuję! Merci!

PLM http://wa.amu.edu.pl/plm/2023/